
����������
�������

Citation: Morge-Rollet, L.; Le Roy, F.;

Le Jeune, D.; Canaff, C.; Gautier, R.

RF eigenfingerprints, an Efficient RF

Fingerprinting Method in IoT

Context. Sensors 2022, 22, 4291.

https://doi.org/10.3390/s22114291

Academic Editor: Carles Gomez

Received: 18 April 2022

Accepted: 1 June 2022

Published: 5 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

RF eigenfingerprints, an Efficient RF Fingerprinting Method in
IoT Context
Louis Morge-Rollet 1,* , Frédéric Le Roy 1, Denis Le Jeune 1, Charles Canaff 1 and Roland Gautier 2

1 ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France;
frederic.le_roy@ensta-bretagne.org (F.L.R.); denis.le_jeune@ensta-bretagne.org (D.L.J.);
charles.canaff@ensta-bretagne.org (C.C.)

2 Lab-STICC, Université de Bretagne Occidentale (UBO, Brest Campus), CEDEX 3, F-29238 Brest, France;
roland.gautier@univ-brest.fr

* Correspondence: louis.morge-rollet@ensta-bretagne.org

Abstract: In IoT networks, authentication of nodes is primordial and RF fingerprinting is one of the
candidates as a non-cryptographic method. RF fingerprinting is a physical-layer security method
consisting of authenticated wireless devices using their components’ impairments. In this paper,
we propose the RF eigenfingerprints method, inspired by face recognition works called eigenfaces.
Our method automatically learns important features using singular value decomposition (SVD),
selects important ones using Ljung–Box test, and performs authentication based on a statistical
model. We also propose simulation, real-world experiment, and FPGA implementation to highlight
the performance of the method. Particularly, we propose a novel RF fingerprinting impairments
model for simulation. The end of the paper is dedicated to a discussion about good properties of RF
fingerprinting in IoT context, giving our method as an example. Indeed, RF eigenfingerprint has
interesting properties such as good scalability, low complexity, and high explainability, making it a
good candidate for implementation in IoT context.

Keywords: RF fingerprinting; IoT networks security; eigenfaces; FPGA implementation

1. Introduction

Internet of Things (IoT) is one of the most important 21st century technologies. It con-
nects smart devices such as sensors and actuators to the Internet. IoT is present everywhere
from wearables (smart watches, etc.) to smart cities, impacting many domains such as
transportation, energy, and agriculture, among others.

According to [1,2], security and privacy are two of the most important challenges in
IoT networks. Nowadays, Internet security depends on cryptography ensuring confiden-
tiality (AES, . . .), authenticity (RSA, . . .), integrity (SHA-256, . . .), and non-repudiation.
However, Sankhe et al. [3] explained that classic cryptography algorithms such as RSA
cannot be handled by IoT smart devices. Indeed, these devices are generally low-power
technologies with small computation capacities. Thus, RF fingerprinting is one of the
candidates to authenticate smart devices in IoT networks as non-cryptographic technol-
ogy [4]. It consists of authenticating a device using their components’ impairments (carrier
offset, I/Q imbalance, etc.). One of the interesting properties of RF fingerprinting is that
signatures are considered as non-fungible. Historically, RF fingerprinting methods used
expert hand-crafted features but are now considered as dependent on a priori assump-
tions [5]. Thus, recently, feature learning based on deep learning models has been widely
developed for RF fingerprinting [3,5,6]. However, the main problem of using deep learning
for RF fingerprinting is that it requires a lot of data for learning and has high computation
complexity. New solutions must be developed to overcome these issues.

In this paper, we propose a novel method for RF fingerprinting called RF eigenfin-
gerprints. Our proposal is a feature-learning RF fingerprinting method based on face

Sensors 2022, 22, 4291. https://doi.org/10.3390/s22114291 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5739-7801
https://orcid.org/0000-0003-3570-1061
https://doi.org/10.3390/s22114291
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114291?type=check_update&version=2

Sensors 2022, 22, 4291 2 of 23

recognition works, developed in the early 1990s, called eigenfaces. Our method allows to
automatically learn features for RF fingerprinting, has low computation complexity, and
requires few data for learning. The principal contributions of this paper are the following:

1. We adapt the eigenfaces principles to RF fingerprinting domain. Furthermore, we
develop a strong theoretical background of our approach.

2. We propose a novel baseband model for emitter impairments simulation, taking into
account I/Q offset, I/Q imbalance, and power amplifier nonlinearity.

3. We develop a lightweight FPGA implementation of our features projection step on
Digilent Zedboard (Xilinx Zynq-7000).

4. We present a methodology to interpret the features learned by our algorithm.

Section 2 is dedicated to the state of the art presenting eigenfaces and RF fingerprint-
ing. Section 3 presents the methodology for RF eigenfingerprints, and Section 4 presents
different experiments. In Section 5, we discuss important properties for RF fingerprinting
in IoT context, taking our method as example. Finally, Section 6 concludes this article.

2. State of the Art
2.1. Eigenfaces

In 1987, M. Kirby and L. Sirovich [7,8] proposed the use of Karhunen–Loève trans-
form to automatically learn important features for face recognition. The Karhunen–Loève
transform, also called principal component analysis (PCA) in machine learning [9,10], is
a transform that learns automatically on an orthogonal basis widely used for dimension-
ality reduction. In 1991, M. Turk and A. Pentland [11,12] developed a face recognition
method called eigenfaces based on previously introduced works of Kirby and Sirovich.
The selected eigenvectors learned by Karhunen–Loève transform are called eigenfaces.
An example of eigenfaces learned on Yale Face dataset [13,14] is provided in Figure 1.
(Figure 1 (The eigenfaces are learned using the extended Yale Face database B [13,14])).
In addition to automatically learned features for face recognition, their method allows
classification of known faces, rejection of unknown faces, and even detects that an image
under investigation is not a face image. Their work is considered to be the first successful
example of facial recognition technology. Furthermore, eigenfaces have influenced many
face recognition works, such as fisherfaces [13], but also different domains under the name
of eigenimages.

Figure 1. Eigenfaces example.

2.2. RF Fingerprinting

As already explained, RF fingerprinting methods are part of non-cryptographic au-
thentication [4] aiming to authenticate a device without using cryptography. On one hand,
software-based approaches authenticating a device, depending on its software implemen-
tation or protocol characteristics, using MAC frames or network traffic [15,16]. On the
other hand, RF fingerprinting authenticates or identifies a device using its components
impairments (hardware-based) or channel characteristics (channel-based).

Classically, RF fingerprinting techniques are considered for authentication and access
control [17], but some authors prefer to consider it as a second authentication factor [18].
According to Guo et al. [19], RF fingerprinting is divided into two steps. The first step, called
“RF fingerprint extraction”, consists of extracting significant features from the observed
signal. The second step, called “RF fingerprint authentication”, uses the extracted features
to perform authentication.

Sensors 2022, 22, 4291 3 of 23

One on hand, the channel (or location)-based approaches perform authentication using
channel characteristics such a received signal strength (RSS) or channel state information
(CSI) [4]. On the other hand, hardware (or radiometric)-based authentication methods
exploit emitter impairments to perform authentication [20]. Indeed, the analog front end
of an emitter is composed of several components, such as digital-to-analog converters
(DAC), I/Q mixer, power amplifier (PA), and local oscillator (LO). The variabilities of
the manufacturing process create small impairments on components such as I/Q offset,
I/Q imbalance, nonlinear distorsions, and carrier frequency offset (CFO) [21]. While an
emitter is transmitting, the impairments of its components create unique signature on the
transmitted RF signal. Thus, this signature can be exploited to authenticate a device using
its components’ impairments.

According to Soltanieh et al. [17], the hardware-based approaches are usually divided
into two groups: (1) transient-based and (2) steady-state/modulation-based. Transient-
based approaches used transitory signals to perform authentication [22–24]. For example,
Aghnaiya et al. use variational mode decomposition (VMD) and higher-order statistics
(HOS) to perform authentication of Bluetooth devices using signal transients [24]. On the
contrary, modulation-based approaches are based on steady-state signal, i.e., the modula-
tion part [20,25]. For example, Brik et al. use features such as CFO and I/Q offset extracted
from steady-state signals to perform authentication of devices [20].

2.3. Feature-Learning for RF Fingerprinting

In recent years, feature learning (or representation learning [26]) is becoming the new
trend in RF fingerprinting domains. Indeed, these approaches learn significant features
directly from signals rather than using expert knowledge features depending on a priori
assumptions [5]. From this perspective, DARPA agency launched, in 2017, a program
called Radio Frequency Machine Learning Systems (RFMLS), aiming to develop the use
of machine learning for radio frequency [27,28]. Particularly, one task of the program was
dedicated to the development of feature-learning algorithms for RF fingerprinting. Recently,
deep learning architectures (according to Goodfellow et al., deep learning methods corre-
spond to a subset of representation learning methods [26]) have been widely used for RF
fingerprinting feature learning in modulation-based domains. In [21], Riyaz et al. propose a
deep learning architecture for RF fingerprinting based on modulation identification works
presented in [29]. Since then, several authors have explored the RF fingerprinting method
for IoT using feature learning approaches [6,30,31]. Particularly, many works address
the complexity problem in IoT context using a lightweight method [32–34]. For example,
in [32], the authors present an lightweight procedure based on mobile edge computing
(MEC) in IoT context. Furthermore, some authors mentioned that another important aspect
of RF fingerprinting for IoT is scalability [5,33], i.e., the capacity of the algorithm to be
retrained easily. Indeed, the authors mentioned that Siamese network architectures can
solve this problematic, especially using one-shot learning.

3. Methodology

The RF eigenfingerprint method presented in this paper is a feature-learning approach
on steady-state signal based on the eigenfaces works previously introduced. To do so,
the preamble is used to learn the features called RF eigenfingerprints corresponding to the
emitter signature. A preamble is a known signal, starting every wireless communication
and depending on a specific protocol. Generally, preambles are used for temporal synchro-
nization, frequency synchronization, and equalization. In our case, using a preamble allows
us to have a common signal for all wireless devices using the same protocol, reducing the
sources of non-significant variability, i.e., the transmitted data.

In this section, we present different steps necessary for learning or inference. The steps
are presented in chronological order, for example, the feature learning (Section 3.2) is before
feature selection (Section 3.3). Furthermore, some steps are necessary for learning and

Sensors 2022, 22, 4291 4 of 23

inference, such as preprocessing (Section 3.1) and projection (Section 3.4.1). Figure 2 resume
the different steps involved during learning phase and inference phase.

Learning phase

RF signals dataset

Pre-processing

Feature learning

Feature selection

Projection

Class parameters learning

RF eigenfingerprints
(Learned features)

Class centroids
(Class representation)

Inference phase

Incoming RF signal

Pre-processing

Projection

Decision

Identity

Figure 2. Methodology summary.

3.1. Preprocessing

The preprocessing is a step primordial for reducing non-informative variabilities (or
factors of variation [26]) present in the signal. Indeed, RF eigenfingerprints are based on
singular value decomposition (SVD), a linear algebra tool similar to PCA. As explained by
Brunton in [10], SVD and PCA are really sensitive to variability. For example, in eigenfaces,
misaligned face datasets (translation, rotation, etc.) require more eigenfaces to learn the
face variability than well-aligned face datasets. This feature explosion is due to the fact
that PCA (or SVD) is not invariant to scale, translation, and rotation, among others. In the
eigenfaces literature, this preprocessing is called data alignment [10]. Thus, performing
preprocessing on the received signal is paramount to eliminate non-informative source of
variabilities such as signal delay or complex amplitude.

In our case, we consider that the received signal r(t) is the following:

r(t) = As(t− τ)ej2π∆ f t + n(t) (1)

where:

• s(t): The emitted preamble.
• A ∈ C: The signal complex amplitude.
• τ: The signal delay between emitter and receiver.
• ∆ f : The frequency offset between emitter and receiver.
• n(t) ∼ CN (0, σ2): An additive white Gaussian complex noise with power σ2.

In this paper, we present two preprocessing processes:

• Preprocessing process n°1: This preprocessing process is presented in Figure 3 and
consists of correcting the frequency offset, the signal delay, and the complex amplitude.

• Preprocessing process n°2: This preprocessing process is presented in Figure 4 and
consists of correcting the signal delay and the complex amplitude.

The preprocessing process n°1 uses several steps to perform corrections on received
signal r(t). The first step of this preprocessing process estimates the frequency offset ∆ f
using the M-th power estimator r(t)M ≈ AMej2Mπ∆ f t + n1(t) (with n1(t) a noise) and
Fourier transform (FT): ∆̂ f = arg max f FT(s(t)M). Once the frequency offset is estimated,
the preprocessing process compensates frequency offset by multiplying r(t) with a complex

Sensors 2022, 22, 4291 5 of 23

exponential e−j2π∆̂ f t resulting in s1(t) = As(t − τ) + n2(t) (with n2(t) a noise with the
same properties as n(t)). The second step estimates the signal delay τ and the complex
amplitude A using a cross correlation Rs1s(T) between s1(t) and s(t). Indeed, the cross-
correlation peak allows us to estimate the signal delay τ̂ = arg maxT Rs1s(T) and the
complex amplitude Â = maxT Rs1s(T). Finally, a time shifting and amplitude correction
are performed to obtain the centered signal. The final noise n′(t) is an additive white
Gaussian complex noise with power σ2

n = σ2

Â2 . This preprocessing process is similar to some
preprocessings present in the RF fingerprinting domain [33].

This preprocessing is really similar to the preprocessing step present before demod-
ulation in wireless communications. Indeed, for data demodulation, frequency synchro-
nization, phase synchronization, and time synchronization are primordial. This common
process can be an advantage because it is already required for demodulation and thus adds
no additional cost to implement it for RF eigenfingerprints.

X X
Figure 3. Preprocessing process n°1.

The preprocessing process n°2 does not correct frequency offset, considering carrier
frequency offset as constant in time [20,31]. Indeed, contrary to preprocessing presented in
Figure 3, this preprocessing process estimates the frequency offset ∆ f but does not perform
frequency synchronization. Instead, the estimated frequency offset ∆̂ f is used to obtain
a desynchronized preamble s f (t) = s(t)ej2π∆̂ f t to estimate signal delay τ and complex
amplitude A. Indeed, the cross-correlation Rrs f (T) between received signal r(t) and the
desynchronized preamble s f (t) allows us to estimate the signal delay τ̂ = arg maxT Rrs f (T)
and the complex amplitude Â = arg maxT Rrs f (T). However, this preprocessing process
is different to the demodulation preprocessing step introduced previously and can add
additional cost to implement. Identically, the noise n′(t) is an additive white Gaussian
noise with power σ2

n = σ2

Â2 .

X

Figure 4. Preprocessing process n°2.

In this paper, we propose two preprocessing processes, but other preprocessing pro-
cesses can be designed for RF eigenfingerprints. For example, equalization can also be
part of the preprocessing processes to avoid learned channel-dependent features. Indeed,
in the case where the devices are non-static, the channel is another source of variability
that requires correction. This preprocessing type has been used by Sankhe et al. [3,35] to
compensate the effect of channel for the feature learning RF fingerprinting approach.

3.2. Feature Learning

The feature learning approach is performed using SVD and consists of decomposing a
matrix M as a product of three matrices M = UΣVH [10]. This learning requires a set of

Sensors 2022, 22, 4291 6 of 23

preprocessed received signal xi ∈ CN where N is the number of preamble samples. Using
these signals, the data matrix X ∈ CN×L is obtained and composed of L column vectors xi:

X =
[
x1 · · · xL

]
(2)

The first step computes the mean vector x̄ ∈ CN composed of the mean of each line
x̄i = ∑L

i=1 xij, where xij is the ith sample of the jth signal xj:

x̄ =

 x̄1
...

x̄N

 (3)

Then, the second step computes the centered data matrix Btrain ∈ CN×L:

Btrain = Xtrain − x̄[1 · · · 1] (4)

Once the centered data matrix is computed, an SVD is performed, allowing us to
obtain the eigenvectors matrix U = [u1 · · · uN] ∈ CN×N :

Btrain = UΣVH (5)

An additional step can be performed, allowing us to obtain the corresponding eigen-
values λi on the diagonal of matrix D ∈ RN×N :

D =
1

L− 1
ΣΣT (6)

In this work, we prefer to use SVD instead of PCA, as in eigenfaces works [7,8,11,12].
This implementation choice was made for two principal reasons. The SVD has less compu-
tation complexity than PCA and the SVD order eigenvectors, depending on eigenvalues in
a descending manner [10].

3.3. Features Selection

Classically, features selection in PCA consists of analyzing eigenvalues to find when
adding an eigenvector to features subspace is no longer necessary, and is called elbow
estimation in the literature [9]. Furthermore, more optimal techniques for eigenvectors
selection with SVD are presented in [10]. In this paper, we propose a novel features selection
based on the Ljung–Box hypothesis test [36]. This statistical test is classically used in time
series to estimate the presence of autocorrelation for lags different from zero. The key
idea behind this features selection method is that the first K eigenvectors (corresponding
to significant features) have non-zero values autocorrelation. In contrast, the last N − K
eigenvectors corresponding to white noise have zero values autocorrelation. This type of
idea is really similar to signal and noise subspace separation in high-resolution spectral
estimation methods such as Pisarenko, MUSIC, and ESPRIT [37]. Algorithm 1 presents
the features selection process. It allows us to obtain the matrix Uproj = [u1 · · · uK] ∈ CN×K,
which contains the K selected features called the RF eigenfingerprints.

Sensors 2022, 22, 4291 7 of 23

Algorithm 1: Feature eigenvectors selection algorithm
Data: U = {u1, · · · , uN}: Eigenvectors matrix
Result: Uproj = [u1 · · · uK]: Projection matrix
K ← 0;
H ← 1;
while H 6= 0 do

H ← LjungBoxQTest(uK);
K ← K + 1;

end
K ← K− 1;

3.4. Decision

When RF fingerprinting is used for authentication, it determines if a received signal
corresponds to the identity that it claimed (using an ID). Generally, in a IoT network, N
devices are allowed to communicate. The outlier detection step determines if the received
signal corresponds to one of the known devices. Then, the classification problem consists
of identifying the corresponding class.

3.4.1. Projection

Once the projection matrix Uproj is obtained, an preprocessed preamble x ∈ CN can
be projected onto the features subspace to obtain z ∈ CK, as described in Equation (7). This
step is called projection but is also referred to as feature extraction [17,19].

z = UH
proj(x− x̄) (7)

The projected data matrix Z ∈ CK×L is obtained similarly:

Z = UH
proj(X− x̄[1 · · · 1]) (8)

The projection corresponds to "RF fingerprint extraction" described in Section 2.2.

3.4.2. Statistical Modeling

For the decision step, a statistical modeling of the projected signal z is required.
To do so, we consider that for a specific class c, s(t) is constant, i.e., the impairments are
permanent [17]. Furthermore, an additive white Gaussian complex noise n′(t) ∼ CN (0, σ2

n)
projected on an orthonormal basis is also an additive white Gaussian complex noise
n
′′
(t) ∼ CN (0, σ2

n) (see Appendix A).
Based on these statements, the statistical modeling of projected signals of a certain

class c follow a complex multivariate Gaussian distribution [38,39]:

f (z, Θc) =
1

|Σc|πK e−(z−µc)HΣ−1
c (z−µc) (9)

where

• µc: The mean vector of class c.
• Σc = σ2

n I: The variance–covariance matrix of class c.
• Θc = {µc, Σc}: The distribution parameters of class c.

It can be noted that statistical modeling supposes a homoscedasticity hypothesis be-
tween classes, i.e., the variance–covariance matrix is identical for each class. This hypothesis
supposes the SNR is similar for all emitters.

Sensors 2022, 22, 4291 8 of 23

Furthermore, the modeling of the C known class (with C the numbers of class) is a
Gaussian mixture model described here:

g(z, Θ) =
C

∑
k=1

pk f (z, Θk) (10)

where

• pk = P(y = k): The probability of receiving a signal. In this paper, we consider that
the emission probability of a certain emitter is equal to 1

C . Another possibility is to
consider pk in a multinoulli distribution and estimate it using frequentist approach)
for class k (here, 1

C).
• Θ = {Θ1, · · · , ΘC, p1, · · · , pC}: The mixture parameters.

3.4.3. Class Parameters Learning

The only parameter to learn for each class is the class centroid µc , using the
following estimator:

µ̂c =
1

∑L
i=1 δ(yi, c)

L

∑
i=1

δ(yi, c)zi (11)

where

• zi: The projection of xi in the subspace.
• yi: The corresponding class of xi.
• δ: The Dirac function.

Each axis being independent from the others due to projection on an orthonormal
basis caused learning of µc to not be affected by curse of dimensionality [9].

Furthermore, it is possible to determine the number of examples required to estimate
a class centroid knowing the signal-to-noise ratio (and thus the value of σ2

n). Indeed,
Appendix B.1 gives the formula to determine the number of samples Lc required to estimate
a class centroid using a 1− α confidence interval:

Lc =
t1−ασ2

n
2Ic

(12)

where

• t1−α: The threshold corresponding to P(X < t1−α) = 1− α (with X ∼ χ2(2)).
• Ic: The confidence interval size.

The confidence interval size can be defined as a fraction of d = λmin − σ2
n , where

λmin is the eigenvalue corresponding to the last selected eigenvectors (see Appendix B.2).
Indeed, the eigenvalue λi represents the variance in projected axis i, and σ2

n represents the
intra-class variation. Thus, the term d = λmin − σ2

n represents the inter-class variation, i.e.,
the variation of class means in the last selected eigenvector. Finally, defining confidence
interval size as a fraction of d could avoid class centroid superposition on the last axis due
to lack of examples during estimation.

3.4.4. Outlier Detection

The first step in the RF fingerprinting decision process determines if a given signal x
and its projection z correspond to a legitimate user. Outlier detection for RF eigenfinger-
prints is described by Equation (13) [9,18]:

δ(g(z, Θ) < T) (13)

where

Sensors 2022, 22, 4291 9 of 23

• T: The outlier tolerance threshold (the outlier tolerance threshold can be determined
using the method presented in [9]).

• δ: The indicator function.

3.4.5. Classification

The second step in the RF fingerprinting decision process identifies class belonging to
a signal considered as legitimate. The classification is based on maximum a posteriori:

y = argmaxc P(y = c|z) (14)

In our case, the a priori probability is P(y = c) = 1
C , i.e., legitimate emitters have same

emitting probability. Thus, the maximum a posteriori rule becomes a maximum likelihood
rule. Finally, the homoscedasticity hypothesis (Σc = σ2

n I) classification decision becomes a
mean centroid classifier:

y = arg maxc P(z|y = c) (15)

= arg maxc f (z, Θc) (16)

= arg maxc
1

(πσ2)K e
‖z−µ̂c‖2

σ2 (17)

= arg maxc ‖z− µ̂c‖2 (18)

Another strategy (this strategy must be preferred if SNR of different emitter are not
similar) exists, combining outlier detection and classification steps, and is presented in
eigenfaces works [11,12]. It compares the projection z independently to each class centroid
estimation µ̂c using a specific class threshold Tc (see Appendix C):

δ(‖z− µ̂c‖2 < Tc) (19)

The class threshold can be determined using the following equation:

Tc =
t1−ασ2

c
2

Lc + 1
Lc

(20)

where

• t1−α: The threshold corresponding to P(X < t1−α) = 1− α with X ∼ χ2(2K)).
• σ2

c : The normalized noise power of class c.

However, this strategy requires a threshold Tc per class, thus increasing the mem-
ory impact.

3.4.6. Clustering

Clustering analyses are unsupervised learning methods that automatically identify
groups in data without labels. Classic methods for clustering are hierarchical clustering,
K-means, and DBSCAN [9]. In an RF fingerprinting context, clustering can be used to
determine from rejected signals (considered as illegitimate users during outlier detec-
tion) the number of illegitimate users and their intentions. In [40], the authors used non-
parametric clustering to detect attacks in wireless networks among Sybil and masquerade
attack. Furthermore, Robyns et al. [18] used DBSCAN for unsupervised RF fingerprinting
in a Lora network.

Clustering methods can be used in IoT context to perform reverse engineering of a
network attack, allowing us to determine the number of attackers and their intentions.
The clustering method will be guided by the statistical modeling of classes described in
Equations (9) and (10). Furthermore, non-parametric methods would be preferred, i.e., the
number of attackers is automatically learned by a clustering algorithm. Gaussian mixture

Sensors 2022, 22, 4291 10 of 23

model can be used taking into account the specific hypothesis (Σc = σ2
c I) with Bayesian

Gaussian mixture process [9,40].

4. Experiments
4.1. Impairments Simulation

The first experiment consists of simulating a pool of wireless devices using an RF
fingerprinting impairments model presented in Figure 5. This model is inspired by several
models present in the literature [25,41,42].

X

X

+ +

+

+

Figure 5. Impairments model.

The parameters of the model are the following:

• IQ offset (U is an uniform distribution):

– AI ∼ U(−0.01, 0.01): Real part.
– AQ ∼ U(−0.01, 0.01): Imaginary part.

• IQ imbalance:

– ε ∼ U(−0.01, 0.01): Gain imbalance.
– θ ∼ U(−π

32 , π
32): Phase skew.

• Power amplifier (AM/AM) (a2 ans a3 are negative and produce amplitude
clipping (compression)):

– K = 3.
– a1 = 1.
– a2 ∼ −U([−27dB,−33dB]).
– a3 ∼ −U([−45dB,−55dB]).

This configuration corresponds to RF eigenfingerprints using preprocessing process
n°1 (Figure 3). We simulate 10 different devices with 30 signals for each class. The preamble
is a 250-sample QPSK signal with RRC shape filter (the filter is designed with Matlab
function rcosdesign (0.5, 4, 5)) with unit power (Ps = 1). The signal-to-noise ratio (SNR) is
fixed to 30 dB using additive white Gaussian complex noise (Pn = 10−3).

The features selection algorithm selects only the first three features. These features
are presented in Figure 6. The upper part of the figure corresponds to the learned RF
eigenfingerprints ui, the middle part corresponds to x̄− 3

√
λiui, and the lower part cor-

responds to x̄ + 3
√

λiui. This technique allows us to evaluate the impact of a specific RF
eigenfingerprint ui on the mean signal x̄. We can observe that the first RF eigenfinger-
print corresponds to I/Q imbalance impairments (ε, θ). The second RF eigenfingerprint
corresponds to RF power amplifier effect (a2, a3) and I/Q offset (AI , AQ). Finally, the last
RF eigenfingerprint corresponds also to I/Q offset (AI , AQ). The learned features have
human-level explainability properties compared to other feature learning based on deep
learning models. We discussed these explainability properties in Section 5.3.

In addition to feature extraction/learning, explainability and the decision is also
interpretable. Indeed, the mean class signal can also be obtained using sc = x̄ + Uprojµ̂c.
This signal, composed of mean signal x̄, the features subspace Uproj, and the class centroid
estimation µ̂c, corresponds to an estimation of the signal sent by the emitter of class c
(without noise). We also discussed these explainability properties in Section 5.3.

Sensors 2022, 22, 4291 11 of 23

Figure 6. Visualisation of learned features.

4.2. Real-World Performance Evaluation

In this subsection, we present a real-world experiment showing the classification
performances of the RF eigenfingerprints. For this experiment, we used four ADALM-
Pluto software-defined radio (SDR) platforms from Analog Devices as emitter, with central
frequency f0 = 2.45 GHz and sampling frequency Fs = 5 Msps (the transmitted signal is a
QPSK at 1 MBd with roll-factor β = 0.5, thus the signal bandwidth is 1.5 MHz. The authors
choose these signal parameters according to WPAN IoT standards such as ZigBee, using
VERT2450 antenna (Ettus Research). Concerning the receiver part, we used a BB60C I/Q
signal recorder (the software used to record the signals is Spike from Signal Hound) with
central frequency f0 = 2.45 GHz and frequency sampling Fs = 5 Msps using VERT2450
antenna. The signal recorder is located at 45 cm from the emitter. The testbench of the
experiment is presented in Figure 7. For each ADALM-Pluto (class), we collect 50 preamble
signals (the same as presented in Section 4.1). A preprocessing step is performed consisting
of injecting additive white Gaussian complex noise to obtain a desired SNR (SNRd) of 30 dB.
The procedure used is similar to the noise injection presented in [43]. The only difference
is that the power of noise to be injected n′(t) is computed as follows: P′n = Ps

SNRd
− Pn.

Finally, we split the signals into 70/30, leading to 35 training signals and 15 testing signals
for each class.

Different classifiers are studied:

• Classifier 1: RF eigenfingerprints using preprocessing process n°2 (Figure 4).
• Classifier 2: RF eigenfingerprints using preprocessing process n°1 (Figure 3).
• Classifier 3: Naive Bayes classifier composed of RF eigenfingerprints statistical model

(Equation (9)) using preprocessing process n°1 and Gaussian distribution for
frequency offset.

Sensors 2022, 22, 4291 12 of 23

Figure 7. Testbed of the experiment.

The training is performed with 30 dB SNR on the training set (140 signals). The mean
signal is x̄, and features subspace Uproj and centroid class µ̂c are learned during training.
The testing is performed injecting noise on a testing set (60 signals) to obtain a specific SNR
from 0 dB to 30 dB. The classification performances are shown in Figure 8. We can observe
that the most efficient classifier is classifier 1, with a classification accuracy of nearly 100%
from 0 dB to 30 dB. This can be explained because frequency offset is highly significant [20]
for classification. Furthermore, it seems more efficient to estimate carrier frequency offset
than classifier 3 for low SNR values. Secondly, classifier 3 is also efficient for SNR from
6 dB to 30 dB. Finally, classifier 2 has the lowest classification performances compared to
the other classifiers.

The Classifier 1, using preprocessing process n°2, needs more features than other
classifiers because it is based on linear combination of features for learned frequency
offset concept. Furthermore, the features learned are less interpretable compared to other
classifiers presented in Figure 6. Classifier 2 is potentially the better classifier, with a good
compromise between explainability, complexity, and performance.

In [21], the authors used CNN on I/Q signals with similar experimental conditions.
Particularly, the signals of 128 samples used in this experiment come from five SDR
platforms (USRP B210/X310) at 2.45 GHz sampled at 1.92 Msps. For an SNR of 20 dB, their
architecture reached an accuracy of 90%. Compared to their results, the proposed classifier 1
and classifier 2 show better performances. In [34], the authors proposed a lightweight
CNN architecture for RF fingerprinting of four Zigbee devices. Their architecture showed
less noise robustness than classifier 1 but showed better noise robustness than classifier
2 and 3 for low SNR (0–10 dB). It can be noted that other works show better results [3,5]
compared to results presented in [21]. However, these approaches are difficult to compare
with our results because they considered more emitters than in the experiment presented
in Section 4.2.

Sensors 2022, 22, 4291 13 of 23

-10 -5 0 5 10 15 20 25 30

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Accuracy against SNR: Mean centroid classifier

Classifier 1
Classifier 2
Classifier 3

Figure 8. Performances evaluation on real-world signals.

4.3. FPGA Implementation

In this part, we provide an FPGA implementation of projection described by Equation (7)
using RF eigenfingeprints learned by classifier 2 and 3 in the previous section (N = 250,
K = 7). This projection is implemented using Vivado High-Level Synthesis (HLS) for Xilinx
Zedboard (Zynq-7000) at 80 MHz. Vivado HLS 2019.2 is a high-level synthesis software
that produces hardware description level (HDL) code using high-level synthesis language.
For our implementation, the high-level language used is C++ and the hardware description
level produced is VHDL.

The pseudocode of projection implementation is presented in Algorithm 2. The input
x ∈ C250 is a complex array (in reality, a complex array is represented using two real arrays:
one array for real part and one array for imaginary part) of 250 samples stored in block
RAM (BRAM), and the output z ∈ C7 is a complex array of seven coefficients stored in
BRAM. The first step of projection initializes projection vector z as a null vector. Secondly,
a loop iteratively computes the value of projection vector z for each signal sample x(i).
Indeed, each x(i) is subtracted to obtain y(i) = x(i) − x̄(i), the ith sample of centered signal
y. Then, each coefficient of z is updated using z(j) = z(j) + h∗j,iy

(i). This iterative process is

repeated for each x(i).
Two optimizations, opti1 and opti2, can be used to accelerate the projection. The opti-

mization opti1 based on #pragma HLS unroll asks the tool to unroll the initialization loop.
The optimization opti2 based on #pragma HLS pipeline asks the tool to pipeline the internal
projection loop. Further optimizations are possible, but opti1 and opti2 give us the best
compromise between error reconstruction and hardware resources.

Sensors 2022, 22, 4291 14 of 23

Algorithm 2: Pseudocode of FPGA implementation
Data: x: Input signal, x̄: Mean signal, Uproj = {u1, · · · , uN}: Projection matrix
Result: z: Projected signal
for i = 1 : K do // Initialization loop (opti1 is here)

z(i) ← 0;
end
for i = 1 : N do // External projection loop

y(i) ← x(i) − ¯x(i);
for j = 1 : K do // Internal projection loop (opti2 is here)

z(j) ← z(j) + h∗j,iy
(i);

end
end

The different implementation results ẑproj are compared with Matlab reference zproj

result using mean square error (MSE) in percentage E = ‖ẑproj − zproj‖2/‖ẑproj‖2. Using
ap_fixed<16, 2> (arbitrary precision fixed point, 16 bits), the MSE error in percentage is
0.6294%. Furthermore, different implementations depending on optimizations opti1 and
opti2 are reported in Table 1.

Table 1. Implementations comparison.

Version opti1 opti2 BRAM18K DSP48E FF LUTs Cycles Latency

apfixed162_v1 No No 6 4 224 363 6009 75.11 µs
apfixed162_v2 Yes No 6 4 223 417 6004 75.05 µs
apfixed162_v3 No Yes 6 5 266 446 1762 22.03 µs
apfixed162_v4 Yes Yes 6 5 265 547 1757 21.96 µs

The most efficient implementation is apfixed162_v3 because it performed projection
in 22.03 µs and required less area (BRAM18K, DSP48E, FF, LUT) than apfixed162_v4.
The projection implemented is 250× 7 transform which requires a centering (250× 1) using
mean signal x̄ and projection (250 × 7) using projection matrix Uproj.

On one hand, the signature of an emitter used for this implementation is composed
of 224 bits (µ̂c ∈ C7 → 2× 7× 16 bits). On the other hand, RSA algorithm requires a
key size of 1024 bits or bigger. Thus, our implementation reduces, by a factor of at least
4.57, the memory required to store an emitter signature. Furthermore, compared to RSA’s
fastest HW/SW implementation on Zynq-7000, the execution time is reduced by a factor
of 138 (reference architecture for comparison is apfixed162_v3) [44] and the execution
time is reduced by a factor of 77, compared to fastest FPGA implemented presented
in [44]. Finally, the area occupied by our implementations is smaller than the majority of
implementations presented in [44]. Thus, compared to RSA implementations, our physical-
layer authentication implementation requires less memory to store emitter signature, has
smaller latency, and requires fewer hardware resources than RSA implementations.

5. Interesting Properties in IoT Context
5.1. Integration in IoT Networks

Integrating an RF fingerprinting algorithm in an IoT network is a complex challenge.
On one hand, an RF fingerprinting algorithm aims to determine if an incoming signal comes
from a legitimate emitter at the physical layer. One the other hand, the interactions between
the algorithm and the upper layers must also be taken into account. This subsection
presents the decision process for RF fingerprinting and its interaction with upper layers.

Sensors 2022, 22, 4291 15 of 23

5.1.1. Three-Steps Decision

Three-steps decision (also called 3-steps decision) is a general but important property
for RF fingerprinting authentication. As previously explained in Section 3.4, 3-steps decision
is important to perform authentication using RF fingerprinting. The first step, called
outlier detection, determines if an incoming signal is a legitimate device. On one hand,
if the incoming signal is considered to be coming from a legitimate user and is accepted,
the second decision step, called classification, identifies among N known devices which
one it belongs to. On the other hand, if the incoming signal is considered as an illegitimate
device and rejected, clustering can be performed for network attack reverse engineering
using all rejected signals to determine the number of attackers and their intentions. The
3-steps detection process is described in Figure 9. It can be noted that a 2-steps decision
process can also be implemented for non-cryptographic authentication in an IoT network.
This 2-steps decision process, combining outlier detection and classification, allows us
to identify if an incoming signal is legitimate and, in this case, to know to which device
it corresponds.

Outlier detection

Classification

Clustering

Legitimate
device ?

Yes

No

class

cluster

Figure 9. Three-steps decision process.

5.1.2. Interactions with Upper Layers

Concerning the implementation of the three-steps decision in IoT networks, several
aspects should be considered. First of al, Xie et al. have mentioned that during the training
phase (or learning phase), the legitimate devices must use the upper-layers authentica-
tion mechanisms to prove their identities [45]. Indeed, if an attacker performed an attack
during the training phase (referred to as poisoning attack [46]), the performance of RF
fingerprinting algorithm during inference phase can be drastically impacted. Moreover,
the interactions of the RF fingerprinting algorithm with upper layers during inference phase
should also be considered. In [20], the authors propose a server-based implementation of
an RF fingerprinting algorithm for WLAN network monitoring. They mentioned that when
their system detects illegitimate devices, alerts can be send to network administrators. Al-
ternatively, RF fingerprinting algorithms can be implemented on the IoT devices as second
authentication factor [18], i.e., in addition to cryptographic authentication mechanisms.

5.2. IoT Properties

The RF fingerprinting algorithm must be designed according to specific properties
required to be implemented in IoT networks. Indeed, these networks have specific char-
acteristics that impact the implementation possibilities. This subsection presents these
different mandatory properties in an IoT context.

5.2.1. Scalability

Some important characteristics of IoT networks are dynamic changes and enormous
scale, among others [1]. Thus, as explained by Shah et al. [2], an important challenge in
IoT network is scalability. The scalability for a computer system consists of being able
to adapt its size really easily. In IoT context, smart devices must join and quit a network
in a simple manner. In our case, this property can be obtained because feature learning
(Section 3.2) is independent from decision parameters learning (Section 3.4), contrary
to classic deep learning models. Two configurations for feature subspaces learning are

Sensors 2022, 22, 4291 16 of 23

possible: (1) learning features on the N known devices dataset [12]; (2) learning features
on a general dataset of devices [5]. As we already explained in [5], the scalability for RF
fingerprinting can be decomposed into two sub-properties:

• Few-shot learning: This property consists of requiring few data to learn a specific class.
Generally, the deep learning model requires at least a thousand data for learning a
class. On the contrary, our method requires fewer data per class (35 examples per
class).

• Partial retrainability: This property consists of adding or removing a wireless device
simply. It is possible because feature learning and feature class parameters learning
are independent and classification is not based on a common classifier.

Feature learning approaches generally require a lot of data to be trained. In [21],
the authors used 720,000 examples to train their network, i.e., 180,000 examples per class.
In [5,33], the authors suggested that Siamese networks could be used to solve this problem
of scalability. Indeed, Siamese networks are able to perform one-shot learning, i.e., learn a
class representation using a single example. However, these algorithms require a pretrain-
ing phase necessary to learn projection space using thousand of training examples. Unlike
Siamese networks, our approach requires few examples to learn the projection space and
has smaller complexity.

5.2.2. Complexity

Another challenge of IoT networks is device-level energy issues [1]. Indeed, lots of
smart devices of sensing layers are low-power technologies and have small computation
capacities. Thus, smart IoT devices cannot implement classic cryptography algorithms, such
as RSA, among others. Thus, designing small-complexity RF fingerprinting intended for
smart devices is primordial. This will allow RF fingerprinting algorithms to be implemented
on smart devices as non-cryptographic authentication methods. Similarly to scalability,
complexity property can be decomposed into two sub-properties:

• Computation: This property requires that projection and 2-steps decision (projection,
classification) are simple to compute. The computation complexity of RF eigenfin-
gerprints are summarized in Table 2 (the definitions of N, K, and C are presented
in Section 3).

• Memory: This property requires that features projection and 2-steps decision (pro-
jection, classification) have low memory impact. The memory complexity of RF
eigenfingerprints are summarized in Table 2.

Table 2. RF eigenfingerprints complexity.

Type Computation Memory

Projection O(NxK) O(NxK)
Classification O(KxC) O(KxC)

Feature learning approaches can also have high complexity. For example, in [21], their
CNN architecture was composed of more than a hundred thousand parameters. Some
authors proposed smaller architecture for feature-learning approaches in RF fingerprinting.
Arroyo et al. presented a low complexity trainable architecture with 1757 trainable param-
eters [33]. For our part, the model trained in Section 4.2 was composed of 2282 complex
parameters. However, our method is more scalable than the approach presented in [33]
because the number of features, K, does not depend on class number C. Moreover, several
authors proposed lightweight CNN architecture for RF fingerprinting in IoT context [33,34].
Although their architectures were smaller than classic CNN architectures, the number of
trainable parameters are still around 200,000.

Sensors 2022, 22, 4291 17 of 23

5.3. Explainability

Generally, feature learning is performed using deep learning architecture such as
convolutive neural networks. However, deep learning networks are considered as black-
box models. Even if some efforts are made to understand deep learning in theoretical
or practical manners, it is not yet sufficient, thus limiting their usage in critical contexts.
Indeed, explainability has close relations with security [46] and is one of the keys for usage
of RF fingerprinting in IoT networks. The method we present in this paper has good
explainability properties. On one hand, learned features ui called RF eigenfingerprints are
interpretable, as observed in Figure 6. On the other hand, class mean signal sc = x̄+Uprojµ̂c
can also be observed and analyzed using expert knowledge.

Some experiments have been conducted to interpret learned features for modulation
recognition tasks, such as those presented in [29,47]. However, to the best of our knowledge,
only Kuzdeba et al. have proposed an approach to interpret features learned by their archi-
tecture [48] in the RF fingerprinting domain. Besides our learned features explainability,
our method has better theoretical background than their method.

6. Conclusions

This paper presents the RF eigenfingerprints method based on face recognition works
called eigenfaces. Our method consists of learning features using singular value decompo-
sition (SVD), selecting important ones using the Ljung–Box hypothesis test and performing
decision based on statistical modeling. We present several experiments showing properties
and performances of RF eigenfingerprints. Particularly, we provide simulation using a
novel RF fingerprinting impairments model. Using this experiment, the authors present a
methodology allowing human-level explainability of learned features. Furthermore, we
also provide real-world experiment based on ADALM-Pluto SDR platforms. Our method
shows good classification performances, even for low SNR using few examples (dozens
of examples per class). Finally, we provide FPGA implementation of feature extraction,
called projection, on Zedboard using Vivado HLS. Our FPGA implementation performed
feature extraction in about 22 µs with a small hardware area. Our method presents good
explainability properties from a theoretical or experimental point of view. It is also a good
compromise between high scalability and low complexity, making it well adapted in an
IoT context. Future research need to be focused on RF fingerprinting pairing protocols,
allowing smart devices to be registered securely on IoT network, avoiding data poisoning
attack. Next works could be focused on (1) evaluating the performance of the algorithm for
bigger number of emitters, (2) exploring the case of additive non-Gaussian noise, and (3)
developing RF fingerprinting pairing protocols for secure registration of smart devices on
IoT networks.

Author Contributions: Conceptualization, L.M.-R.; methodology, L.M.-R.; software, L.M.-R.; valida-
tion, L.M.-R., F.L.R., D.L.J., C.C. and R.G.; formal analysis, L.M.-R. and F.L.R.; investigation, L.M.-R.;
resources, F.L.R. and C.C.; data curation, L.M.-R.; writing—original draft preparation, L.M.-R.; writ-
ing—review and editing, L.M.-R., F.L.R., C.C. and R.G.; visualization, L.M.-R., F.L.R., C.C. and R.G.;
supervision, F.L.R., D.L.J. and R.G.; project administration, R.G.; funding acquisition, R.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by ENSTA Bretagne of Brest and also supported by the IBNM
CyberIoT Chair of Excellence of the University of Brest.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge ENSTA Bretagne of Brest and the IBNM CyberIoT
Chair of Excellence of the University of Brest for their supports.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 4291 18 of 23

Appendix A. Noise Projection on Orthonormal Basis

In wireless communication, the additive noise is due to thermal noise and generally
modeling using an additive white Gaussian complex noise [49]. Indeed, the thermal noise
is linked to thermal agitation of charges. Under 100 GHz, the thermal noise has white
properties, meaning that the spectral density can be considered as flat. Furthermore, con-
sidering the large number of charges, the density probability of thermal noise is considered
Gaussian [50].

This appendix presents the main steps of the demonstration, where a white Gaussian
complex noise vector n =

(
n1 · · · nN

)T projected on an orthonormal basis U is still a white

Gaussian complex noise vector np =
(

n(1) · · · n(N)
)T

(with n(k) = ∑N
i=1 αi(k)ni and αi(k)

the ith coefficient of axis k of orthonormal basis U) validating the statistical modeling
presented in Equation (9). The different steps of the demonstration are the following:

1. Demonstrating that ∀(i, j), Cov(n(i), n(j) = δ(i, j)σ2
n allows us to prove that noise

projection on different axes are statistically independent.

2. Demonstrating that ∀i, Cov(<(n(i)),=(n(i)) = 0 and<(n(i)) ∼ N (0, σ2
n
2) and=(n(i)) ∼

N (0, σ2
n
2) (using Lindenberg conditions) prove that n(i) ∼ CN (0, σ2

n).
3. Demonstrating that ∀(i, j), Cov(n(i), n(j) = δ(i, j)σ2

n and n(i) ∼ CN (0, σ2
n) prove the

statistical distribution of noise vector projection np = UHn ∈ CN of complex Gaussian
noise vector n ∈ CN can be described by (with Σc = Iσ2

n):

fnp(np, Σc) =
1

|Σc|πN e−nH
p Σ−1

c np (A1)

It can be noted that Tse has demonstrated, in [49], that a white Gaussian noise projected
on an orthogonal basis is still a white Gaussian noise on the projected space.

Appendix B. Class Centroid Sampling

Appendix B.1. Determining Sample Size

For a specific class, we consider µ̂c as the mean centroid estimation of class c. Particu-
larly, we note µ̂

(i)
c the ith component of the estimation corresponding of the ith axis. In this

appendix, we will define µ̂c as follows:

µ̂c =
1
Lc

Lc

∑
j=1

zk (A2)

where:

• zj: The projection of an aligned signal xj belonging to class c in the subspace.
• Lc: The samples number used to estimate the class centroid µc.

As previously explained, each axis is independent from the others because of
the projection in orthonormal basis. Here, we will demonstrate for a specific axis
i and a specific class c, but the demonstration is identical for all axes. We note
z(i,c)j = (µ(i,c) + zn) ∼ CN (µ(i,c), σ2

n) the projection of signal xj belonging to class c
on the axis i and zn ∼ CN (0, σ2

n). We are interested in estimating the variation of the
following estimator:

µ̂
(i)
c =

1
Lc

∑
j

z(i,c)j (A3)

where Lc is the number of examples used for the estimation.

Thus, µ̂
(i)
c = (µ(i,c) + z̄n) ∼ CN (µ(i,c), σ2

n
Lc
) with z̄n ∼ CN (0, σ2

n
Lc
). We want to estimate

the variance of the estimator µ̂
(i)
c and determine a confidence interval. This variance,

Sensors 2022, 22, 4291 19 of 23

equal to σ2
n

Lc
, is characterized entirely by variation of z̄n. The term z̄n = x̄n + iȳn can be

decomposed in real part x̄n ∼ N (0, σ2
n

2Lc
) and imaginary part ȳn ∼ N (0, σ2

n
2Lc

) (x̄n and ȳn are
independent).

In this demonstration, we want to find Ic such as P(|z̄n|2 < Ic) = 1− α. The term
|z̄n|2 = x̄2

n + ȳ2
n can be decomposed as a sum of the squared value of its real and imaginary

part. Using this, we can determine Ic as follows:

P((x̄n

σn/
√

2Lc
)2 + (

ȳn

σn/
√

2Lc
)2 ≤ t1−α) = 1− α (A4)

where t1−α is the threshold such as P(X < t1−α) = 1− α with X ∼ χ2(2).
The random variables x̄n

σn/
√

2Lc
∼ N (0, 1) and ȳn

σn/
√

2Lc
∼ N (0, 1) follow a standard nor-

mal distribution. Thus, the random variable (x̄n
σn/
√

2Lc
)2 + (ȳn

σn/
√

2Lc
)2 ∼ χ2(2). Therefore,

the threshold Ic can be found as follows:

P((x̄n

σn/
√

2Lc
)2 + (

ȳn

σn/
√

2Lc
)2 < t1−α) = P(x̄2

n + ȳ2
n ≤

t1−ασ2
n

2Lc
) (A5)

= 1− α (A6)

Finally, with a confidence interval size Ic =
t1−ασ2

n
2Lc

, the minimum number of examples
giving a specific interval size Ic and a specific probability 1− α is

Lc =
t1−ασ2

n
2Ic

(A7)

Appendix B.2. Determining Confidence Interval Size

As previously explained, the confidence interval size can be determined as a fraction
of d = λmin − σ2

n to limit estimation variation in the last axis. As previously shown, we will
focuse on a single axis i, but the demonstration is identical for the others axes.

We will consider z(i) a random variable following a complex Gaussian mixture GMM(Θ)

where Θ = {p1, · · · , pK, µ
(i)
1 , · · · , µ

(i)
K , σ2

n}. Furthermore, z(i) = x(i) + iy(i) can be decom-
posed into a real part x(i) and an imaginary part y(i), both independent and following a
real Gaussian mixture. We want to evaluate the variance of z(i):

Var(z(i)) = Var(x(i)) + Var(y(i)) (A8)

= λi (A9)

For this part of the demonstration, we will compute the variance of x(i), but
the demonstration is identical for y(i). The probability distribution of x(i) is equal to

g(x, ΘI) = ∑k pk f (x, ΘI
k) where ΘI

k = {µI
1, · · · , µI

K, σ2
n
2 } with µI

1 = <(µ1) Thus, using the
König–Huygens theorem:

Var(x(i)) = E((x(i))2)−E(x(i))2 (A10)

Calculation of E(x(i)):
E(x(i)) = ∑

k
pkµI

k (A11)

For the calculation of E((x(i))2), we will first need to obtain E((x(i)k)2) where x(i)k is

a random variable depending on class k. Furthermore, we will decompose x(i)k = µI
k +

σn√
2

xu ∼ N (µI
k, σ2

n
2) with xu ∼ N (0, 1). Thus, E((x(i)k)2) = (µI

k)
2 + σ2

n
2 because E(x2

u) = 1.

Sensors 2022, 22, 4291 20 of 23

Using E((x(i)k)2), we are able to obtain E((x(i))2):

E((x(i))2) = ∑
k

pk(µ
I
k)

2 +
σ2

n
2

(A12)

As Var(x(i)) = E((x(i))2)−E(x(i))2, we can obtain the expression of the variance:

Var(x(i)) = ∑
k

pk(µ
I
k)

2 +
σ2

n
2
− (∑

k
pkµI

k)
2 (A13)

= ∑
k

pk(µ
I
k − (∑

j
pjµ

I
j))

2 +
σ2

n
2

(A14)

As the demonstration for Var(y(i)) is identical, we can obtain Var(y(i)) as follows:

Var(y(i)) = ∑
k

pk(µ
Q
k − (∑

j
pjµ

Q
i))

2 +
σ2

n
2

(A15)

where µQ
k = =(µk).

Finally, Var(z(i)) is equal to

Var(z(i)) = ∑
k

pk((µ
I
k − (∑

j
pjµ

I
i))

2 + (µQ
k − (∑

j
pjµ

Q
i))

2) + σ2
n (A16)

= d + σ2
n (A17)

The term d = ∑k pk((µ
I
k − (∑j pjµ

I
i))

2 + (µQ
k − (∑j pjµ

Q
i))

2) corresponds to the inter-
class variation, i.e., the variation of means of each class in the projected axis i. Thus,
d = λi − σ2

n represents the inter-class variation and it can be used to determine the value of
confidence interval size Ic.

Appendix C. Class Threshold Computing

This appendix focuses on explaining the procedure to find the class threshold Tc. This
threshold is computed to obtain P(‖z− µ̂c‖2 < Tc) = 1− α with z being a projected signal
from class c.

The vector z = µc + zn with zn =

 z(1)n
· · ·

z(nK)

 ∈ CK and ∀i, z(i)n ∼ CN (0, σ2
c) and

∀(i, j), Cov(z(i)n , z(j)
n) = δ(i, j)σ2

c . Furthermore, the vector µ̂c = µc + z̄ with z̄ =

 z̄(1)

· · ·
z̄(K)

 ∈ CK

and ∀i, z̄(i) ∼ CN (0, σ2
c

Lc
) and ∀(i, j), Cov(z̄(i), z̄(j)) = δ(i, j) σ2

c
Lc

. Thus, the distance between z
and µ̂c is the following:

‖z− µ̂c‖2 =
K

∑
i=1
|z(i)n − z̄(i)|2 (A18)

=
K

∑
i=1
<(z(i)n − z̄(i))2 +=(z(i)n − z̄(i))2 (A19)

As previously explained, z(i)n ∼ CN (0, σ2
c) ⇔ <(z(i)n) ∼ N (0, σ2

c
2) and =(z(i)n) ∼

N (0, σ2
c
2) and Cov(<(z(i)n),=(z(i)n)) = 0 (identically for z̄(i)). Thus, as z(i)n and z̄(i) are

independent, the random variable z(i)c = (z(i)n − z̄(i)) ∼ CN (0, σ2
c

Lc+1
Lc

). Furthermore, as a

Sensors 2022, 22, 4291 21 of 23

squared sum of K independent standard normal random variables, si follow a chi-squared
distribution χ2(K), thus

‖z− µ̂c‖2

Lc+1
Lc

σ2
c /2

=
K

∑
i=1

<(z(i)c)2

Lc+1
Lc

σ2
c /2

+
=(z(i)c)2

Lc+1
Lc

σ2
c /2
∼ χ2(2K) (A20)

Thus, P(‖z−µ̂c‖2

Lc+1
Lc σ2

c /2
< t1−α) = 1− α, with t1−α the threshold, such as P(X < t1−α) = 1− α.

The probability that ‖z− µ̂c‖2 is below a certain threshold with probability 1− α is

P(‖z− µc‖2 <
t1−ασ2

c
2

Lc + 1
Lc

)) = 1− α (A21)

Finally, the threshold value is obtained as follows:

Tc =
t1−ασ2

c
2

Lc + 1
Lc

(A22)

References
1. Patel, K.K.; Patel, S.M. Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application and

Future Challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131.
2. Shah, S.H.; Yaqoob, I. A survey: Internet of Things (IOT) technologies, applications and challenges. In Proceedings of the 2016

IEEE Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 21–24 August 2016; pp. 381–385
3. Sankhe, K.; Belgiovine, M.; Zhou, F.; Angioloni, L.; Restuccia, F.; D’Oro, S.; Melodia, T.; Ioannidis, S.; Chowdhury, K. No Radio

Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments. IEEE Trans. Cogn. Commun.
Netw. 2020, 6, 165–178. [CrossRef]

4. Zeng, K.; Govindan, K.; Mohapatra, P. Non-cryptographic authentication and identification in wireless networks [Security and
Privacy in Emerging Wireless Networks]. IEEE Wirel. Commun. 2010, 17, 56–62. [CrossRef]

5. Morge-Rollet, L.; Le Roy, F.; Le Jeune, D.; Gautier, R. Siamese Network on I/Q Signals for RF fingerprinting. In Actes de la
Conférence CAID 2020; Hindustan Aeronautics Limited: Bengaluru, India, 2020; pp. 152–159.

6. Mattei, E.; Dalton, C.; Draganov, A.; Marin, B.; Tinston, M.; Harrison, G.; Smarrelli, B.; Harlacher, M. Feature Learning for
Enhanced Security in the Internet of Things. In Proceedings of the 2019 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019.

7. Sirovich, L.; Kirby, M. Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A Opt. Image Sci.
1987, 4, 519–524. [CrossRef]

8. Kirby, M.; Sirovich, L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans. Pattern
Anal. Mach. Intell. 1990, 12, 103–108. [CrossRef]

9. Aurélien, G. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow; O’Reilly Media, Inc.: Newton, MA, USA, 2017.
10. Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge

University Press: Cambridge, UK, 2019.
11. Turk, M.A.; Pentl, A.P. Face recognition using eigenfaces. In Proceedings of the 1991 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, Maui, HI, USA, 3–6 June 1991.
12. Turk, M.A.; Pentl, A.P. Eigenfaces for Recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [CrossRef]
13. Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From Few to Many: Illumination Cone Models for Face Recognition under

Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660.
14. Lee, K.C.; Ho, J.; Kriegman, D.J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal.

Mach. Intell. 2005, 27, 684–698. [CrossRef]
15. Yang, S.; Qin, H.; Liang, X.; Gulliver, T.A. An Improved Unauthorized Unmanned Aerial Vehicle Detection Algorithm Using

Radiofrequency-Based Statistical Fingerprint Analysis. Sensors 2019, 19, 274. [CrossRef]
16. Aneja, S.; Aneja, N.; Bhargava, B.; Chowdhury, R.R. Device fingerprinting using deep convolutional neural networks. Int.

Commun. Netw. Distrib. Syst. 2022, 28, 171–198. [CrossRef]
17. Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq.

Identif. 2020, 4, 222–233.
18. Robyns, P.; Marin, E.; Lamotte, W.; Quax, P.; Singelée, D.; Preneel, B. Physical-layer fingerprinting of LoRa devices using

supervised and zero-shot learning. In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, Boston, MA, USA, 18 July 2017.

http://doi.org/10.1109/TCCN.2019.2949308
http://dx.doi.org/10.1109/MWC.2010.5601959
http://dx.doi.org/10.1364/JOSAA.4.000519
http://dx.doi.org/10.1109/34.41390
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.3390/s19020274
http://dx.doi.org/10.1504/IJCNDS.2022.121197
http://dx.doi.org/10.1109/JRFID.2020.2968369

Sensors 2022, 22, 4291 22 of 23

19. Guo, X.; Zhang, Z.; Chang, J. Survey of Mobile Device Authentication Methods Based on RF fingerprint. In Proceedings of
the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France,
29 April 2019.

20. Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the
14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 14–19 September 2008.
[CrossRef]

21. Riyaz, S.; Sankhe, K.; Ioannidis, S.; Chowdhury, K. Deep Learning Convolutional Neural Networks for Radio Identification. IEEE
Commun. Mag. 2018, 56, 146–152. [CrossRef] [PubMed]

22. Tian, Q.; Lin, Y.; Guo, X.; Wang, J.; AlFarraj, O.; Tolba, A. An Identity Authentication Method of a MIoT Device Based on Radio
Frequency (RF) Fingerprint Technology. Sensors 2020, 20, 1213 [CrossRef]

23. Mohamed, I.; Dalveren, Y.; Catak, F.O.; Kara, A. On the Performance of Energy Criterion Method in Wi-Fi Transient Signal
Detection. Electronics 2022, 11, 269. [CrossRef]

24. Aghnaiya, A.; Dalveren, Y.; Kara, A. On the Performance of Variational Mode Decomposition-Based Radio Frequency Finger-
printing of Bluetooth Devices. Sensors 2020, 20, 1704.

25. Huang, Y. Yuanling Huang and Jian Chen. Radio Frequency Fingerprint Extraction of Radio Emitter Based on I/Q Imbalance.
Procedia Comput. Sci. 2017, 107, 472–477.

26. Goodfellow, I.; Bengio, Y.; Courville, A. Yoshua Bengin and Aaron Courville. In Deep Learning; The MIT Press: Cambridge, MA.
USA, 2018.

27. John, D. Radio Frequency Machine Learning Systems (RFMLS). Available online: https://www.darpa.mil/program/radio-
frequency-machine-learning-systems (accessed on 15 April 2022).

28. The Radio Frequency Spectrum + Machine Learning = A New Wave in Radio Technology. Available online: https://www.darpa.
mil/news-events/2017-08-11a (accessed on 15 April 2022).

29. O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional Radio Modulation Recognition Networks. In Proceedings of the International
Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2–5 September 2016; pp. 213–226. [CrossRef]

30. Chen, X.; Hao, X. Feature Reduction Method for Cognition and Classification of IoT Devices Based on Artificial Intelligence. IEEE
Access 2019, 7, 103291–103298. [CrossRef]

31. Peng, L.; Hu, A.; Zhang, J.; Jiang, Y.; Yu, J.; Yan, Y. Design of a Hybrid RF fingerprint Extraction and Device Classification Scheme.
IEEE Int. Things J. 2019, 6, 349–360. [CrossRef]

32. Chen, S.; Wen, H.; Wu, J.; Xu, A.; Jiang, Y.; Song, H.; Chen, Y. Radio Frequency Fingerprint-Based Intelligent Mobile Edge
Computing for Internet of Things Authentication. Sensors 2019, 19, 3610. [CrossRef]

33. Gutierrez del Arroyo, J.A.; Borghetti, B.J.; Temple, M.A. Considerations for Radio Frequency Fingerprinting across Multiple
Frequency Channels. Sensors 2022, 22, 2111. [CrossRef]

34. Qing, G.; Wang, H.; Zhang, T. Radio frequency fingerprinting identification for Zigbee via lightweight CNN. Phys. Commun. 2021,
44, 101250. [CrossRef]

35. Jian, T.; Rendon, B.C.; Ojuba, E.; Soltani, N.; Wang, Z.; Sankhe, K.; Gritsenko, A.; Dy, J.; Chowdhury, K.; Ioannidis, S. Deep
Learning for RF Fingerprinting: A Massive Experimental Study. IEEE Internet Things Mag. 2020, 3, 50–57.

36. Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 1996.
37. Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [CrossRef]
38. Hankin, R.K.S. The Complex Multivariate Gaussian Distribution. R J. 2015, 7, 73–80. [CrossRef]
39. Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution. Proc. IEEE 1963, 34, 152–177.
40. Nguyen, N.T.; Zheng, G.; Han, Z.; Zheng, R. Device fingerprinting to enhance wireless security using nonparametric Bayesian

method. In Proceedings of the 2011 Proceedings IEEE INFOCOM (2011), Shanghai, China, 11–15 April 2011.
41. Scott, I. Analogue IQ Error Correction For Transmitters—Off Line Method. Available online: http://vaedrah.angelfire.com

(accessed on 15 April 2022). [CrossRef]
42. Isaksson, M.; Wisell, D.; Ronnow, D. A comparative analysis of behavioral models for RF power amplifiers. IEEE Trans. Microw.

Theory Tech. 2006, 54, 348–359.
43. Ozturk, E.; Erden, F.; Guvenc, I. RF-Based Low-SNR Classification of UAVs Using Convolutional Neural Networks. arXiv 2020,

arXiv:2009.05519.
44. Sharif, M.U.; Shahid, R.; Gaj, K.; Rogawski, M. Hardware-software codesign of RSA for optimal performance vs. flexibility

trade-off. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL),
Lausanne, Switzerland, 29 August–2 September 2016. [CrossRef]

45. Xie, N.; Li, Z.; Tan, H. A Survey of Physical-Layer Authentication in Wireless Communications. IEEE Commun. Surv. Tutorials
2021, 23, 282–310. [CrossRef]

46. He, Y.; Meng, G.; Chen, K.; Hu, X.; He, J. Towards Security Threats of Deep Learning Systems: A Survey. IEEE Trans. Softw. Eng.
2021, 48 1743–1770. [CrossRef]

47. West, N.E.; O’Shea, T. Deep architectures for modulation recognition. In Proceedings of the 2017 IEEE International Symposium
on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, 6 March 2017.

http://dx.doi.org/10.1109/MCOM.2018.1800153
http://dx.doi.org/10.3390/s20041213
http://www.ncbi.nlm.nih.gov/pubmed/32098444
http://dx.doi.org/10.3390/electronics11020269
http://dx.doi.org/10.3390/s20061704
https://www.darpa.mil/program/radio-frequency-machine-learning-systems
https://www.darpa.mil/program/radio-frequency-machine-learning-systems
https://www.darpa.mil/news-events/2017-08-11a
https://www.darpa.mil/news-events/2017-08-11a
http://dx.doi.org/10.1109/ACCESS.2019.2929311
http://dx.doi.org/10.1109/JIOT.2018.2838071
http://dx.doi.org/10.3390/s19163610
http://dx.doi.org/10.3390/s22062111
http://dx.doi.org/10.1016/j.phycom.2020.101250
http://dx.doi.org/10.1109/IOTM.0001.1900065
http://dx.doi.org/10.32614/RJ-2015-006
http://dx.doi.org/10.1214/aoms/1177704250
http://vaedrah.angelfire.com
http://dx.doi.org/10.1109/TMTT.2005.860500
http://dx.doi.org/10.1109/COMST.2020.3042188
http://dx.doi.org/10.1109/TSE.2020.3034721
http://dx.doi.org/10.1109/TSE.2020.3034721

Sensors 2022, 22, 4291 23 of 23

48. Kuzdeba, S.; Carmack, J.; Robinson, J. RF Fingerprinting with Dilated Causal Convolutions–An Inherently Explainable Archi-
tecture. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA,
31 October–3 November 2021.

49. Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2004.
50. Rice, M.D. Digital Communications: A Discrete-Time Approach; Pearson Education: Chennai, India, 2008.

	Introduction
	State of the Art
	Eigenfaces
	RF Fingerprinting
	Feature-Learning for RF Fingerprinting

	Methodology
	Preprocessing
	Feature Learning
	Features Selection
	Decision
	Projection
	Statistical Modeling
	Class Parameters Learning
	Outlier Detection
	Classification
	Clustering

	Experiments
	Impairments Simulation
	Real-World Performance Evaluation
	FPGA Implementation

	Interesting Properties in IoT Context
	Integration in IoT Networks
	Three-Steps Decision
	Interactions with Upper Layers

	IoT Properties
	Scalability
	Complexity

	Explainability

	Conclusions
	Appendix A
	Appendix B
	Appendix B.1
	Appendix B.2

	Appendix C
	References

